A Nearest-Neighbour Approach to Estimation of Entropies

نویسندگان

  • Thomas Maierhofer
  • Nikolai Leonenko
چکیده

The concept of Shannon entropy as a measure of disorder is introduced and the generalisations of the Rényi and Tsallis entropy are motivated and defined. A number of different estimators for Shannon, Rényi and Tsallis entropy are defined in the theoretical part and compared by simulation in the practical part. In this work the nearest neighbour estimator presented in Leonenko and Pronzato (2010) is compared to spacing based estimators presented in Beirlant et al. (1997) and Song (2000) for the Shannon entropy of one-dimensional distributions. For another special case of entropy, the quadratic entropy, the estimator given in Källberg et al. (2014) is compared with the nearest neighbour estimator for multidimensional densities. Comparisons focus on bias and variance for a given sample size and are executed with simulation studies. Based on the simulations, suggestions for which estimator to use under given conditions are derived. Depending on the conditions different estimators perform better than others; one estimator was not found to be universally superior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Kernel Density Estimation without Bumps in the Tails

An empirical approach to bandwidth choice is proposed for nonpara-metric estimation of the tails of a probability density. It is an \equal-information" method, in that it uses approximately equal amounts of sample information to estimate the density at all points. In one respect it is related to nearest neighbour methods, although it produces substantially smoother estimates, without the spikes...

متن کامل

Fuzzy Nearest Neighbour Method for Time-series Forecasting

This paper explores a nearest neighbour pattern recognition method for time-series forecasting. A nearest neighbour method (FNNM) based on fuzzy membership values is developed. The main aim of the forecasting algorithm is to make single point forecasts into the future on the basis of past nearest neighbours. The nearest neighbours are selected using a membership threshold value. The results inc...

متن کامل

تأثیر الگوی پراکنش درختان بر برآورد تراکم با روش نمونه برداری نزدیک‌ترین فرد: مطالعات موردی در درختزارهای بنه زاگرس و توده‌های شبیه سازی شده

Distance methods and their estimators of density may have biased measurements unless the studied stand of trees has a random spatial pattern. This study aimed at assessing the effect of spatial arrangement of wild pistachio trees on the results of density estimation by using the nearest individual sampling method in Zagros woodlands, Iran, and applying a correction factor based on the spatial p...

متن کامل

Forecasting using a Fuzzy Nearest Neighbour Method

1 Singh, S. "Forecasting using a Fuzzy Nearest Neighbour Method", Proc. 6th International Conference on Fuzzy Theory and Technology , Fourth Joint Conference on Information Sciences (JCIS'98), North Carolina, vol. 1, pp.80-83, 1998 (23-28 October ,1998) ABSTRACT This paper explores a nearest neighbour pattern recognition method for time-series forecasting. A nearest neighbour method (FNNM) base...

متن کامل

Hesitant Fuzzy k-Nearest Neighbour (HFK-NN) Classifier for Document Classification and Numerical Result Analysis

This paper presents new approach Hesitant Fuzzy K-nearest neighbour (HFK-nn) based document classification and numerical results analysis. The proposed classification Hesitant Fuzzy K-nearest neighbour (HFKnn) approach is based on hesitant Fuzzy distance. In this paper we have used hesitant Fuzzy distance calculations for document classification results. The following steps are used for classif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015